1 Preliminaries: fixed points of homographies

We note that PSLy(R) = PGLJ (R), since any real matrix with determinant > 0 is homothetic to a unique matrix

with determinant 1. The group PSLy(R) acts on P!(C) by homographies: (2 2) Lz = gjis Moreover, since 7 is

real, we have 7~z = 7 - z. This means that it is enough to look at the action of PSLy(R) on the quotient of P*(C)
by complex conjugation, which is H UR U {occ}.
The fixed points for the homographic action of 7 correspond to (complex) eigenspaces of .

Proposition 1. Two matrices v, € PGL2(R) have the same fized points in P1(C) iff R[y] = R[y/].

This means that a quadratic field K C R?*2 is determined by its fixed points in # UR U {oo}. The field is

imaginary iff it has one fixed point in H and real iff it has two in R U oc.

Numerically, the matrix (g S) with eigenvalues A\, \' = a + d — X corresponds to the fixed points %, “;)‘.

Définition 2. We say that an element v of PSLs(R) is
(i) elliptic if it has two complex conjugate fixed points;
(if) hyperbolic if it has two distinct fixed points in R U {oo};
(iii) parabolic if it has one single, real fixed point.

Since dety = 1, it is easy to see that + is hyperbolic iff |Tr~| > 2 (or its discriminant is < 0), elliptic iff |Trv| < 2
(or its discriminant is > 0), and parabolic iff |Try| = 2 (or its discriminant is 0).

This means that, if v is algebraic over Q, then the algebra Q(v) is an imaginary quadratic field if ~ is hyperbolic,
a real quadratic field (or Q x Q) if  is elliptic, and a local Q-algebra if «y is parabolic.

Let I’ C SLy(R) be a discrete subgroup. A point of H /T is called elliptic if it is fixed by an elliptic element v € T

Proposition 3. Let z € H/T be an elliptic point. Then the stabilizer T, of z in T is a finite cyclic group.

Proof. Let g € SL2(R) such that g-i = 2. Then g'T',g fixes i, and hence included in the stabilizer of i in SLy(R).
This stabilizer is the group SO;(R) ~ R/27Z. Any discrete subgroup of this compact group is finite and cyclic. <

Proposition 4. Let v € R?*? be entire over Z and or finite order. Then the order of vy is either 2, 3, 4, or 6.
(The order of v in PGLa(Z) is either 2 or 3).

Proof. Both eigenvalues of ~ are entire over Z and the norm is 41, so that the eigenvalues are +e*% for some 6 € R.
This implies that Trf = 2 cos . Since this is also an integer, the only possibilities for the characteristic polynomial
of yarex? + 1,22 £z + 1, and (z £ 1)% <

2 Quaternions and complex-multiplication points

2.1 Quadratic fields inside quaternion algebras

Let B be a quaternion algebra over Q. For any quadratic field K C B with non-trivial automorphism o, we know
(by Skolem-Noether) that there exists an element j € B \ 0 such that, for all z € K, jz = o(z)j, and j%2 = 3 € Q.
(Moreover, j is determined up to multiplication by K*). This gives the following map B — K?*2: 2z € K

Y
homomorphism. This map extends to a splitting B ®g K ~ K2*2.
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(g g&)), i (9 JO ) This implies that x + jy € B — (:v ]U(ZJ%)> and we easily check that this is an algebra

Proposition 5. Let L = Q[\@] be a quadratic extension of Q and B/Q be a quaternion algebra such that B C L?*2.
Then B contains a sub-field isomorphic to L.

Proof. Let {i,j} be a quaternionic basis of B over Q: that is, i = ¢,j> = d € Q, and Tri = Trj = Trij = 0.
Since L?*2 is split over L, it is isomorphic to (1,¢/L), and has therefore a quaternionic basis {i,c} with £2 = 1.
Since {i,j} is another quaternionic basis of L, we have j € L[i] - ¢, or j = ae with a € L[i]. Moreover, we see
that d = j2 = acae = aae? = Nipi/o(a) € Q.

We now prove the following lemma: let z € L[i] such that Ny;/.(z) € Q. Then z € Q[i]* - Q[iv/D]*. We
write 2 = z + yv/D with 2,y € Q[i]. Since Nrj/1.(2) = (z+, VD)@ +7yVD) € Q, we see that (27 + Ty) = 0. This
means that y/z € iQ, or that y = itz with ¢t € Q. We then have z = = + yv/D = 2(1 4+ iv/Dt) as required.



Applying this lemma to a, we see that we may write uj = (p+iv/D q)e with u € Q[i]*, which means that (uj)? =
(p* — cDg¢?). Consequently:
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B~ o~ o~ . (1)
Q Q Q

In this last basis, we then have i2 + j2 = D, so that Q[i + j] ~ L C B as required. <

2.2 Complex multiplication points

Let B be an indefinite quaternion algebra over Q. We fix a real quadratic K D Q and choose one of the two
embeddings K C R. The construction of 2.1 then defines an unique map 7 : B — R?*2. (Note that the image
of jK is well-defined!). Let also O be an order of B.

For any z € C, we write A(z) for the lattice (O)- (T) of C2. Let A(z) be the polarized abelian surface C?/A(z).

We say that z has complex multiplication by L C B if it is the fixed point of (L), or equivalently if n(L)-A(z) =
A(z).

Théoréme 6. Let z € C. The following are equivalent.
(i) The point z has complex multiplication (by an imaginary quadratic field L).

(ii) The abelian surface A(z) is isogenous to the square of an elliptic curve E, having complex multiplication
(by L).

(i) The ring Endg(A) is isomorphic to L**2.

(iv) The ring of QM-automorphisms Endg(A) is not reduced to Q.

Proof. (i) = (iii). If A(z) ~ E x E then Endg(A(z)) ~ End3*.
(iii) = (ii). By Falting’s proof of the Tate conjecture for abelian varieties over number fields, we know that, for
{ prime,
HOHIQ(A, FE x E) QR Ly HomGal(Tg(A)7Te(E) X Tz(E)).

The assumption (iii) means that the right-hand side contains an isomorphism ¢. The image of ¢ on the left-hand
side is an isogeny.

(iii) = (ii), elementary proof. Since Endg(A) is not a division algebra, A is not simple. This means that there
exists an isogeny A ~ E; X E,, where Ey, Ey are elliptic curves. If Fy » Ey then Endg A ~ Endg E7 x Endg Ea,
which is at most the product of two quadratic fields and therefore does not contain the quaternion algebra B. This
proves that E; is isogenous to Es, so that A ~ E?.

(iv) = (i). Let L = Endp A(z) and assume that L # Q. For any A € L ~ Q, the multiplication-by- A\ map
defines a map my : C?> — C2, stabilizing A(z) (by the universal property of the universal cover of A(z)). By
the usual properties of abelian varieties, my is a C-linear map. Since my(z) € n(QO) - z, there exists ¢ € O such
that mx(z) = n(c)z. Moreover, since A is a B-endomorphism, my commutes with all elements of 5(Q), which
implies that ¢ lies in the center of B. Since B is a central simple Q-algebra, this means that ¢ € Q. In other words,
z is fixed by the homographic action of \. We just showed that z has complex multiplication by L.

(i) = (iv), not-working proof. We write X = n(O**) \ H for the Shimura curve and A — X for the relative
abelian surface with quaternionic multiplication by O.

Let ¢ : {#z} — X be the injection of the point z. We then know that A(z) = A xx, {z} is the fibre at z of the
surface A.

Assume that z has complex multiplication by a ring R. This means that there exists A € H~\Q such that n(\)-z =
z. Write v = n(\) € R?*?; then yo. =, Let A, = A x x v be the pull-back of A along v, and A, = A(z) x 4 A,.
Since you =1, A, is the fibre of A, above z, and therefore isogenous (as a B-QM surface) to A(z).

Therefore, the scalar A € H~\Q defines an endomorphism m of A(z). We see that m has the same characteristic
polynomial as A, which means that m) is an embedding of R in B.

(i) =(iv). Assume that z has complex multiplication by an element x € B \ Q. Since Imz > 0, L = Q(x) is

imaginary quadratic over Q. Write n(z) = (CCL 2) Then z - (f) = (cz + d) ('f), so that w = (cz + d) is an

endomorphism of A(z). Moreover, since u is a homothety, it commutes to B, so that it is a B-endomorphism
of A(z). Finally, since L is imaginary, L # K, therefore ¢ # 0 and u ¢ R.



(iii) = (iv). By Prop. 5, since B C L?*?, B contains a sub-field L’ isomorphic to L. Write L’ = Q[v/D]: then
the element v/D € B is diagonalizable over Q, and therefore of the form (ﬁ B \/5> in some basis of L2. This

shows that there exists maps L C B C L?*? such that the composition is the map x (ac )), where o is the

o(x
non-trivial automorphism of L/Q. We now see that the L-homothety matrices commute with all elements of B, so
that Endg A = L.

(iv) = (iii) Let R = Endg A D B. Then C = Endp A is the commutant of B in R. Since B is central simple, if

R = B then C' = Q, which is impossible. Hence R # B. <

Let z € X(O) be a CM point by the imaginary quadratic field L C B. We say that z has complex multiplication
by A = LNQO. For any quadratic order A over Z, we write CM(0O, A) for the set of points of X (O) having complex
multiplication by A.

Proposition 7. A point z € X(O) is elliptic iff it has complex multiplication by a imaginary quadratic order
isomorphic to one of the two quadratic orders Z[\/—1] or Z[%]

Proof. The elements v € O fixing z € H/O are entire over Z and of finite order, and therefore of order 2, 3, 4 or 6
in an imaginary quadratic field. <

Proposition 8. Let A, A" C O be two imaginary quadratic orders. The CM points associated with A and A’
coincide iff A’ is conjugated to A by an inner automorphism of O: A’ =z~ Ax for x € O*F,

Proof. Assume A’ = x7'Az. Let z be a fixed point of A: n(a)z = z for a € A. Then, for ' = xtaxr € A,
n(a’)(n(z=1)z) = n(z~ 1)z, so that =1z has complex multiplication by A’.

Conversely, assume that two quadratic orders A, A’ have conjugate fixed points 2,2z’ = oz. Replacing A’
by 0 A'c~!, we may assume that z = 2’. We then use Prop. 1 to conclude. <

2.2.1 Examples.

Let Bg be the quaternion algebra over QQ ramified at the primes 2 and 3: for example, Bg = (2@3>. Let 7,5 € Bg
such that 2 = 2, j2 = 3, ij + ji = 0. A maximal order of Bg is O = <1,i, #, ”‘T”> We fix the real quadratic
field K = Q(v/2) C Bg which gives the embedding

n:BG*)RQXQ,ZW—)(\/? _\/i),j»—><1 3)@]%(\/5 _3\/5). 2)

Let o = #, then we check that a? = —13, so that Q(a) ~ Q(v/—13) C Bs. We have n(a) = ? (é :?), SO

that the fixed point of Q(«) is the image in X (O) of z(a) = /=26 376.
Let 8 = “; then 82 = —1, so that Q(8) = Q(v/—1) C Bs. We have n(8) = %2 (% j’) so that the fixed
point of Q(B) is the image in X(O) of z(8) =1+ v/-2.

Unramified case. Let B; = (1,1/Q) = Q?*2 be the split quaternion algebra over Q. We write i = (1 _1),
j= (1 1), ij = (_1 1), so that 2 = j2 = 1 and (ij)? = —1. Let O(N) = (1,141 N1 i) We check that

O(N) is an order of By. Its image n(O(N)) is the congruence group T'o(N) = {(g g) € SLy(Z),¢ =0 (mod N)}
Therefore, the Shimura curve X (O(N)) is the classical modular curve Xo (V).

Let d € Z and § = “1i + ©Lij € O. The fixed point of n(J) = (1 d) in H is z = v/d, which is imaginary
iftd <0.

3 In characteristic p: supersingular points

Let A be an abelian surface defined over the field k, with quaternionic multiplication by the indefinite algebra B,
i.e. equipped with an (injective) morphism B «— R = End A ® Q.

Théoréme 9. Let A be an abelian surface over k, with QM by the indefinite quaternion algebra B. Then either



(i) A is isogenous to the square E? of an elliptic curve, or

(ii) A is simple and Endg A = B.

If A is not simple, then A is isogenous to a product E; x Fs of two elliptic curves. If £ » E5 then since R =
Endg E; x Endg E», we have at least one injection B — Endg E;, so that the curve E; is supersingular. However, in
this case, the endomorphism ring of E; is the quaternion algebra B), o ramified at {p, co}. Since B,  is a definite
quaternion algebra, we have B # B o, which is impossible. This proves that E; ~ Es.

We therefore have A ~ E? and R = Endg A = (Endg E)?*?. Let C = Endg E. If C = Q then R = Q?*? is a
(split) quaternion algebra over Q@ and there exists a map B — R iff B = R. If C is an imaginary quadratic field
then it must split B. The last case is when C'is the quaternion algebra B, ... We can show that, for any indefinite
quaternion algebra B and any prime p, there exists an embedding B < (B )?*?.

If A is simple, then its endomorphism algebra R = Endg A is a simple algebra. Let K be the center of R. Since
dim A = 2, the field K is an extension of QQ of degree 1, 2 or 4.

If [K : Q] =4 then R = K and R is commutative, which is impossible since B C R.

If K = Q then, since R is central simple over Q, it is a quaternion algebra over QQ, hence R = B.

If K is a real quadratic field, then R is a quaternion algebra over K, containing B and therefore B ® K. Since
Ais simple, R is not split over K. Therefore, K does not split B, and R contains a real quadratic extension K’ of K,
which is therefore a totally real quartic extension of Q. By [Mumford, Corollary p. 191], this implies that 4 | dim A4,
which is impossible.

Assume that K is an imaginary quadratic field. Then since R is a quaternion algebra over K containing B, we
can show that R = B ®qg K.

We can show that this last case may only happen when the base field k has characteristic p > 0. Endg A contains
a CM quartic field L. If p = 0 then A would have its endomorphism ring equal to the CM field L; this impossible
since Endg A is not commutative.

Let g be a place of K that does not divide p. XXX (by Honda-Tate?) Then qis split in R: RQx K ~ Kﬁxz. Since
R is a division algebra, it is not split at all places of K, and is therefore ramified at the two places p,p’ dividing p.
This means that the discriminant of R over K is pp’ = p.

Assume that p does not divide the discriminant of B/Q. Then the embedding B < R, when tensoring by Q,,
gives an embedding

B®RqQ,=Q*% < R®uQ,=R®K (K, ®Ky). (3)
Since the algebra Q%XQ has nilpotent elements while R, ® R, does not, this is a contradiction.

Therefore, p divides discB/Q. This means that B ®g Q, is a division algebra. The Tate module T,,(A) has
dimension 0, 1 or 2. The map B — Endg(A) then gives a map p: B ® Q, — Endg, (7,(4) ®z, Qp). If T,(A) # 0,
then p(1) = 1 and p is therefore injective. This gives an embedding B, — @Q,** for i < 2, which is impossible.



