
1 Preliminaries: �xed points of homographies

We note that PSL2(R) = PGL+
2 (R), since any real matrix with determinant > 0 is homothetic to a unique matrix

with determinant 1. The group PSL2(R) acts on P1(C) by homographies:
(
a b
c d

)
· z = az+b

cz+d . Moreover, since γ is

real, we have γ · z = γ · z. This means that it is enough to look at the action of PSL2(R) on the quotient of P1(C)
by complex conjugation, which is H ∪ R ∪ {∞}.

The �xed points for the homographic action of γ correspond to (complex) eigenspaces of γ.

Proposition 1. Two matrices γ, γ′ ∈ PGL2(R) have the same �xed points in P1(C) i� R[γ] = R[γ′].

This means that a quadratic �eld K ⊂ R2×2 is determined by its �xed points in H ∪ R ∪ {∞}. The �eld is
imaginary i� it has one �xed point in H and real i� it has two in R ∪∞.

Numerically, the matrix
(
a b
c d

)
with eigenvalues λ, λ′ = a+ d− λ corresponds to the �xed points λ−d

c , a−λc .

Dé�nition 2. We say that an element γ of PSL2(R) is

(i) elliptic if it has two complex conjugate �xed points;

(ii) hyperbolic if it has two distinct �xed points in R ∪ {∞};

(iii) parabolic if it has one single, real �xed point.

Since det γ = 1, it is easy to see that γ is hyperbolic i� |Tr γ| > 2 (or its discriminant is < 0), elliptic i� |Tr γ| < 2
(or its discriminant is > 0), and parabolic i� |Tr γ| = 2 (or its discriminant is 0).

This means that, if γ is algebraic over Q, then the algebra Q(γ) is an imaginary quadratic �eld if γ is hyperbolic,
a real quadratic �eld (or Q×Q) if γ is elliptic, and a local Q-algebra if γ is parabolic.

Let Γ ⊂ SL2(R) be a discrete subgroup. A point of H/Γ is called elliptic if it is �xed by an elliptic element γ ∈ Γ.

Proposition 3. Let z ∈ H/Γ be an elliptic point. Then the stabilizer Γz of z in Γ is a �nite cyclic group.

Proof. Let g ∈ SL2(R) such that g · i = z. Then g1Γzg �xes i, and hence included in the stabilizer of i in SL2(R).
This stabilizer is the group SO1(R) ' R/2πZ. Any discrete subgroup of this compact group is �nite and cyclic. C

Proposition 4. Let γ ∈ R2×2 be entire over Z and or �nite order. Then the order of γ is either 2, 3, 4, or 6.
(The order of γ in PGL2(Z) is either 2 or 3).

Proof. Both eigenvalues of γ are entire over Z and the norm is ±1, so that the eigenvalues are ±e±iθ for some θ ∈ R.
This implies that Trθ = 2 cos θ. Since this is also an integer, the only possibilities for the characteristic polynomial
of γ are x2 ± 1, x2 ± x± 1, and (x± 1)2. C

2 Quaternions and complex-multiplication points

2.1 Quadratic �elds inside quaternion algebras

Let B be a quaternion algebra over Q. For any quadratic �eld K ⊂ B with non-trivial automorphism σ, we know
(by Skolem-Noether) that there exists an element j ∈ B r 0 such that, for all x ∈ K, jx = σ(x)j, and j2 = β ∈ Q.
(Moreover, j is determined up to multiplication by K×). This gives the following map B ↪→ K2×2: x ∈ K 7→(
x 0
0 σ(x)

)
, j 7→

(
0 j2
1 0

)
. This implies that x+ jy ∈ B 7→

(
x j2σ(y)
y σ(x)

)
and we easily check that this is an algebra

homomorphism. This map extends to a splitting B ⊗Q K ' K2×2.

Proposition 5. Let L = Q[
√
D] be a quadratic extension of Q and B/Q be a quaternion algebra such that B ⊂ L2×2.

Then B contains a sub-�eld isomorphic to L.

Proof. Let {i, j} be a quaternionic basis of B over Q: that is, i2 = c, j2 = d ∈ Q, and Tr i = Tr j = Tr ij = 0.
Since L2×2 is split over L, it is isomorphic to (1, c/L), and has therefore a quaternionic basis {i, ε} with ε2 = 1.
Since {i, j} is another quaternionic basis of L, we have j ∈ L[i] · ε, or j = aε with a ∈ L[i]. Moreover, we see
that d = j2 = aεaε = aaε2 = NL[i]/L(a) ∈ Q.

We now prove the following lemma: let z ∈ L[i] such that NL[i]/L(z) ∈ Q. Then z ∈ Q[i]× · Q[i
√
D]×. We

write z = x+ y
√
D with x, y ∈ Q[i]. Since NL[i]/L(z) = (x+y

√
D)(x+ y

√
D) ∈ Q, we see that (xy+ xy) = 0. This

means that y/x ∈ iQ, or that y = itx with t ∈ Q. We then have z = x+ y
√
D = x(1 + i

√
D t) as required.
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Applying this lemma to a, we see that we may write uj = (p+i
√
D q)ε with u ∈ Q[i]×, which means that (uj)2 =

(p2 − cDq2). Consequently:

B '
(
c, p2 − cDq2

Q

)
'
(
p2c, c2q2D − p2c

Q

)
'

 p2

cq2 , D −
p2

cq2

Q

. (1)

In this last basis, we then have i2 + j2 = D, so that Q[i+ j] ' L ⊂ B as required. C

2.2 Complex multiplication points

Let B be an inde�nite quaternion algebra over Q. We �x a real quadratic K ⊃ Q and choose one of the two
embeddings K ⊂ R. The construction of 2.1 then de�nes an unique map η : B → R2×2. (Note that the image
of jK is well-de�ned!). Let also O be an order of B.

For any z ∈ C, we write Λ(z) for the lattice η(O) ·
(
z
1

)
of C2. Let A(z) be the polarized abelian surface C2/Λ(z).

We say that z has complex multiplication by L ⊂ B if it is the �xed point of η(L), or equivalently if η(L) ·Λ(z) =
Λ(z).

Théorème 6. Let z ∈ C. The following are equivalent.

(i) The point z has complex multiplication (by an imaginary quadratic �eld L).

(ii) The abelian surface A(z) is isogenous to the square of an elliptic curve E, having complex multiplication
(by L).

(iii) The ring EndQ(A) is isomorphic to L2×2.

(iv) The ring of QM-automorphisms EndB(A) is not reduced to Q.

Proof. (ii) ⇒ (iii). If A(z) ∼ E × E then EndQ(A(z)) ' End2×2
Q .

(iii) ⇒ (ii). By Falting's proof of the Tate conjecture for abelian varieties over number �elds, we know that, for
` prime,

HomQ(A,E × E)⊗ Z` ' HomGal(T`(A), T`(E)× T`(E)).

The assumption (iii) means that the right-hand side contains an isomorphism ι. The image of ι on the left-hand
side is an isogeny.

(iii) ⇒ (ii), elementary proof. Since EndQ(A) is not a division algebra, A is not simple. This means that there
exists an isogeny A ∼ E1 × E2, where E1, E2 are elliptic curves. If E1 � E2 then EndQA ' EndQE1 × EndQE2,
which is at most the product of two quadratic �elds and therefore does not contain the quaternion algebra B. This
proves that E1 is isogenous to E2, so that A ∼ E2

1 .
(iv) ⇒ (i). Let L = EndB A(z) and assume that L 6= Q. For any λ ∈ L r Q, the multiplication-by- λ map

de�nes a map mλ : C2 → C2, stabilizing Λ(z) (by the universal property of the universal cover of A(z)). By
the usual properties of abelian varieties, mλ is a C-linear map. Since mλ(z) ∈ η(O) · z, there exists c ∈ O such
that mλ(z) = η(c)z. Moreover, since λ is a B-endomorphism, mλ commutes with all elements of η(O), which
implies that c lies in the center of B. Since B is a central simple Q-algebra, this means that c ∈ Q. In other words,
z is �xed by the homographic action of λ. We just showed that z has complex multiplication by L.

(i) ⇒ (iv), not-working proof. We write X = η(O×+) rH for the Shimura curve and A → X for the relative
abelian surface with quaternionic multiplication by O.

Let ι : {z} ↪→ X be the injection of the point z. We then know that A(z) = A×X,ι {z} is the �bre at z of the
surface A.

Assume that z has complex multiplication by a ring R. This means that there exists λ ∈ HrQ such that η(λ)·z =
z. Write γ = η(λ) ∈ R2×2; then γ ◦ ι = ι, Let Aγ = A×X γ be the pull-back of A along γ, and Aγ = A(z)×A Aγ .
Since γ ◦ ι = ι, Aγ is the �bre of Aγ above z, and therefore isogenous (as a B-QM surface) to A(z).

Therefore, the scalar λ ∈ HrQ de�nes an endomorphismmλ of A(z). We see thatmλ has the same characteristic
polynomial as λ, which means that mλ is an embedding of R in B.

(i) ⇒(iv). Assume that z has complex multiplication by an element x ∈ B r Q. Since Im z > 0, L = Q(x) is

imaginary quadratic over Q. Write η(x) =
(
a b
c d

)
. Then x ·

(
z
1

)
= (cz + d)

(
z
1

)
, so that u = (cz + d) is an

endomorphism of Λ(z). Moreover, since u is a homothety, it commutes to B, so that it is a B-endomorphism
of A(z). Finally, since L is imaginary, L 6= K, therefore c 6= 0 and u /∈ R.
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(iii) ⇒ (iv). By Prop. 5, since B ⊂ L2×2, B contains a sub-�eld L′ isomorphic to L. Write L′ = Q[
√
D]: then

the element
√
D ∈ B is diagonalizable over Q, and therefore of the form

(√
D
−
√
D

)
in some basis of L2. This

shows that there exists maps L ⊂ B ⊂ L2×2 such that the composition is the map x 7→
(
x

σ(x)

)
, where σ is the

non-trivial automorphism of L/Q. We now see that the L-homothety matrices commute with all elements of B, so
that EndB A = L.

(iv) ⇒ (iii) Let R = EndQA ⊃ B. Then C = EndB A is the commutant of B in R. Since B is central simple, if
R = B then C = Q, which is impossible. Hence R 6= B. C

Let z ∈ X(O) be a CM point by the imaginary quadratic �eld L ⊂ B. We say that z has complex multiplication
by A = L∩O. For any quadratic order A over Z, we write CM(O,A) for the set of points of X(O) having complex
multiplication by A.

Proposition 7. A point z ∈ X(O) is elliptic i� it has complex multiplication by a imaginary quadratic order

isomorphic to one of the two quadratic orders Z[
√
−1] or Z[ 1+

√
−3

2 ].

Proof. The elements γ ∈ O �xing z ∈ H/O are entire over Z and of �nite order, and therefore of order 2, 3, 4 or 6
in an imaginary quadratic �eld. C

Proposition 8. Let A,A′ ⊂ O be two imaginary quadratic orders. The CM points associated with A and A′
coincide i� A′ is conjugated to A by an inner automorphism of O: A′ = x−1Ax for x ∈ O×+.

Proof. Assume A′ = x−1Ax. Let z be a �xed point of A: η(a)z = z for a ∈ A. Then, for a′ = x−1ax ∈ A′,
η(a′)(η(x−1)z) = η(x−1)z, so that x−1z has complex multiplication by A′.

Conversely, assume that two quadratic orders A, A′ have conjugate �xed points z, z′ = σz. Replacing A′
by σA′σ−1, we may assume that z = z′. We then use Prop. 1 to conclude. C

2.2.1 Examples.

Let B6 be the quaternion algebra over Q rami�ed at the primes 2 and 3: for example, B6 =
(

2,3
Q

)
. Let i, j ∈ B6

such that i2 = 2, j2 = 3, ij + ji = 0. A maximal order of B6 is O =
〈
1, i, 1+i+j2 , j+ij2

〉
. We �x the real quadratic

�eld K = Q(
√

2) ⊂ B6 which gives the embedding

η : B6 −→ R2×2, i 7−→
(√

2
−
√

2

)
, j 7−→

(
3

1

)
, ij 7−→

(
−3
√

2√
2

)
. (2)

Let α = i+3ij
2 ; then we check that α2 = −13, so that Q(α) ' Q(

√
−13) ⊂ B6. We have η(α) =

√
2
2

(
1 −9
3 −1

)
, so

that the �xed point of Q(α) is the image in X(O) of z(α) = 1+
√
−26
3 .

Let β = i+ij
2 ; then β2 = −1, so that Q(β) = Q(

√
−1) ⊂ B6. We have η(β) =

√
2
2

(
1 −3
1 −1

)
, so that the �xed

point of Q(β) is the image in X(O) of z(β) = 1 +
√
−2.

Unrami�ed case. Let B1 = (1, 1/Q) = Q2×2 be the split quaternion algebra over Q. We write i =
(

1
−1

)
,

j =
(

1
1

)
, ij =

(
1

−1

)
, so that i2 = j2 = 1 and (ij)2 = −1. Let O(N) =

〈
1, 1+i2 , N+1

2 j, j+ij2

〉
. We check that

O(N) is an order of B1. Its image η(O(N)) is the congruence group Γ0(N) =
{(
a b
c d

)
∈ SL2(Z), c ≡ 0 (mod N)

}
.

Therefore, the Shimura curve X(O(N)) is the classical modular curve X0(N).

Let d ∈ Z and δ = d+1
2 i + d−1

2 ij ∈ O. The �xed point of η(δ) =
(

d
1

)
in H is z =

√
d, which is imaginary

if d < 0.

3 In characteristic p: supersingular points

Let A be an abelian surface de�ned over the �eld k, with quaternionic multiplication by the inde�nite algebra B,
i.e. equipped with an (injective) morphism B ↪→ R = EndA⊗Q.

Théorème 9. Let A be an abelian surface over k, with QM by the inde�nite quaternion algebra B. Then either
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(i) A is isogenous to the square E2 of an elliptic curve, or

(ii) A is simple and EndQA = B.

If A is not simple, then A is isogenous to a product E1 × E2 of two elliptic curves. If E1 � E2 then since R =
EndQE1×EndQE2, we have at least one injection B ↪→ EndQEi, so that the curve Ei is supersingular. However, in
this case, the endomorphism ring of E1 is the quaternion algebra Bp,∞ rami�ed at {p,∞}. Since Bp,∞ is a de�nite
quaternion algebra, we have B 6= Bp,∞, which is impossible. This proves that E1 ∼ E2.

We therefore have A ∼ E2 and R = EndQA = (EndQE)2×2. Let C = EndQE. If C = Q then R = Q2×2 is a
(split) quaternion algebra over Q and there exists a map B → R i� B = R. If C is an imaginary quadratic �eld
then it must split B. The last case is when C is the quaternion algebra Bp,∞. We can show that, for any inde�nite
quaternion algebra B and any prime p, there exists an embedding B ↪→ (Bp,∞)2×2.

If A is simple, then its endomorphism algebra R = EndQA is a simple algebra. Let K be the center of R. Since
dimA = 2, the �eld K is an extension of Q of degree 1, 2 or 4.

If [K : Q] = 4 then R = K and R is commutative, which is impossible since B ⊂ R.
If K = Q then, since R is central simple over Q, it is a quaternion algebra over Q, hence R = B.
If K is a real quadratic �eld, then R is a quaternion algebra over K, containing B and therefore B ⊗K. Since

A is simple, R is not split over K. Therefore, K does not split B, and R contains a real quadratic extension K ′ of K,
which is therefore a totally real quartic extension of Q. By [Mumford, Corollary p. 191], this implies that 4 | dimA,
which is impossible.

Assume that K is an imaginary quadratic �eld. Then since R is a quaternion algebra over K containing B, we
can show that R = B ⊗Q K.

We can show that this last case may only happen when the base �eld k has characteristic p > 0. EndQA contains
a CM quartic �eld L. If p = 0 then A would have its endomorphism ring equal to the CM �eld L; this impossible
since EndQA is not commutative.

Let q be a place ofK that does not divide p. XXX (by Honda-Tate?) Then q is split in R: R⊗KKq ' K2×2
q . Since

R is a division algebra, it is not split at all places of K, and is therefore rami�ed at the two places p, p′ dividing p.
This means that the discriminant of R over K is pp′ = p.

Assume that p does not divide the discriminant of B/Q. Then the embedding B ↪→ R, when tensoring by Qp,
gives an embedding

B ⊗Q Qp = Q2×2
p ↪−→ R⊗Q Qp = R⊗K (Kp ⊕Kp′). (3)

Since the algebra Q2×2
p has nilpotent elements while Rp ⊕Rp′ does not, this is a contradiction.

Therefore, p divides discB/Q. This means that B ⊗Q Qp is a division algebra. The Tate module Tp(A) has
dimension 0, 1 or 2. The map B ↪→ EndQ(A) then gives a map ρ : B ⊗Qp → EndQp

(Tp(A)⊗Zp
Qp). If Tp(A) 6= 0,

then ρ(1) = 1 and ρ is therefore injective. This gives an embedding Bp ↪→ Qi×ip for i 6 2, which is impossible.
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